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Abstract

The Yule-Nielsen effect, also called optical dot gain, 
often been modeled based on convolutions between 
tone dot patterns and a point spread function, PSF, c
acteristic of the paper. The form of the PSF is gener
assumed or measured empirically. An alternative 
proach to modeling the Yule-Nielsen effect employ
probability function P

p
, which describes the fraction 

reflected light emerging between halftone dots and
der dots. The probability model is shown to fit expe
mental data on the Yule-Nielsen effect quite we
Moreover, the model can be implemented with sim
algebraic expressions rather than the convolution or 
rier calculations required for PSF models. In additi
the quantitative relationship between P

p
 and PSF is dem

onstrated.

Introduction

Most printing processes print ink onto paper at only 
level, and gray scale is achieved by printing pattern
dots and varying the fraction F of the paper covered wit
the dots. Murray and Davies modeled gray scale
printed halftone dots with the following expression,1

R(F) = FR
i
 + (1 – F)R

p
, (1)

where R, R
i
, and R

p
 are, respectively, the mean level 

flectance of the image, the reflectance of the printed
and the reflectance of the not printed paper. Howe
variation from this simple linear model is typically o
served and is often called the Yule-Nielsen effect.2 Fig-
ure 1 illustrates the Yule-Nielsen effect for a 65-l
clustered-dot-halftone gray scale printed with a wax t
mal printer with 300-dpi addressability.

Yule and Nielsen suggested the following funct
to model the effect,

         R(F) = [FR
i
1/n + (1 – F)R

p
1/n]n, (2)

where n is an empirical constant adjusted to fit the 
perimental data,2 as illustrated in Fig. 1. Subsequent wo
by Yule and others has examined the fundamental 
tionship between the n factor and independently me
surable parameters of the ink and the paper.3–5 The focus
of the current report is to contribute to this understa
ing by exploring a probability-based model of the Yu
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Figure 1. Reflectance of 65-lpi clustered halftone pattern v
sus dot area fraction. Lines for the Murray-Davies Eq. 1 a
for the Yule-Nielson Eq. 2 with n = 1.5 are shown.

Nielsen effect similar to that suggested by Huntsma6

The assumptions employed in this report include
clustered dot halftones, (2) no penetration of the dot 
the paper substrate, (3) negligible scattering within
dot, and (4) negligible effects from multiple specular 
flections between the ink dots and the paper. The in
is to lay the foundations for later investigations of 
impact of varying from these assumptions. Experim
tal data in this report were obtained using a calibra
CCD camera, microscope optics, frame grabber, 
analysis software as described previously.7

Light Scattering

Yule and Nielsen pointed out that the fundamental r
son for the nonlinear relationship between R and F is
the lateral scattering of light within the paper.2–4 Light
that enters the paper between halftone dots scatter
erally, and this lateral motion of the light in the pap
increases the probability the light will encounter an 
dot and be absorbed. Published reports relating the Y
Nielsen effect to paper and ink parameters have empl
one of two models: The first and most common mod
ing approach describes the lateral motion of the ligh
Chapter V—Tone Reproduction and Gamuts—451
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Figure 2. Photons entering the paper between the dots ma
absorbed (b), return to the surface between the dots (a), or u
a dot (c).

paper with a point spread function PSF or the Fou
equivalent, the modulation transfer function MTF.4, 8–12

Oittinen13 and Engeldrum14 have derived the MTF from
Kubelka-Munk theory, but a useful empirical model of 
paper MTF15 and its corresponding PSF are as follows

    
MTF(ω ) = 1

1 + (kpω )2 , (3)

    
PSF(x) = 1

kp
K0

2πx
kp









 , (4)

where x is the distance in mm from the point where lig
enters the paper, w is spatial frequency in mm–1, k

p
 is a

constant proportional to the mean lateral distance l
travels in the paper, and K

0
 is a Bessel function of th

third kind.16 The interaction between the light and t
halftone dots can be modeled using a convolution i
gral between the dot pattern f(x) and the point sprea
function PSF(x). Several excellent examples of this a
proach to halftone modeling have been published,
cluding studies of the impact of the Yule-Nielsen eff
on the color gamut in printed halftones.4, 8–12

A Probability Model

An alternative approach for modeling the Yule-Niels
effect is based on probability functions for photon 
havior in paper, as suggested by Huntsman.6 For example,
as illustrated in Fig. 2, a photon entering the paper
tween halftone dots will have a finite probability R

g
 of

returning to the paper surface as a reflected photon.
term R

g
 is also the optical reflectance factor of the p

per. The photon can emerge between dots, (A) in Fig
or under a dot, (C) in Fig. 2. As pointed out by Hun
man, we can identify the probability P

p
 of these photons

returning to the surface under a halftone dot and a p
ability 1 – P

p
 of their returning to the surface betwe

the dots. We may also consider the photons that s
the halftone dots of transmittance T

i
. These photons hav

a probability T
i
  of entering the paper, and then a pro
452—Recent Progress in Digital Halftoning II
 be
der

TABLE I. Probability of Photons Returning to the Surface

Figure 3. Empirical model of Eqs. 5, 6 and 1 fit to data on
paper reflectance Rp ink reflectance Ri and man reflectance, R,
versus dot area fraction for a 65-lpi clustered halftone pattern
printed with a 300-dpi wax thermal transfer printer on a calen-
dered, noncoated paper.
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 of returning to the surface of the paper. 

those returning to the surface, there is a probability P
i
 of

returning to the paper surface under a halftone dot a
probability 1 – P

i
 of returning to the surface between t

dots. These probabilities are summarized in Tabl
Based on probability accounting of this kind, Huntsm
was able to derive the Murray-Davies Eq. 1. Moreov
Hunstman’s derivation demonstrated R

i
 and R

p
 are not

constants as assumed in both Eqs. 1 and 2, but are 
tions of the dot area fraction F.

Experimental observations of the variation of bo
R

i
 and R

p
 with F have been reported,7,17 and the data in

Fig. 3 are an example. The data were obtained for a
lpi clustered-dot halftone printed with a wax therm
printer at 300-dpi addressability, and the data were m
sured with a CCD camera, microscope, frame grab
and analysis software as described previously.7 By anal-
ogy with Yule-Nielsen, the data in Fig. 3 were fit to t
following empirical functions for R

i
 and R

p
 by varying

an arbitrary power factor w. The value T
i
 is a constant

equal to the transmittance of the ink dot.

R
p
 = R

 
[1 –(1 – T

i
) (1 – (1 – F)w)], (5)



1

e
S

h
7

io
e
h
fu
 b

m

h

 e
r

t t
o

he
n

th
c

.

q
d.

h

B

een

-

cat-
 are
e-

free
cat-

s of

we

 for
tants
n

13
d

 use
own
ility
,
ween

om-
 the

s

R
i
 = R

g
T

i
[1 – T

i
)Fw]. (6)

The resulting R
i
 and R

p 
values were used with Eq. 

to model the overall reflectance R versus F.
Earlier work demonstrated a relationship betwe

the empirical model of Eqs. 5 and 6 and the MTF/P
model represented by Eqs. 3 and 4.8,15 In particular, the
power factor w and the mean free path k

p
 are related as

follows:

         w = 1 − e– Akpf , (7)

where f is the dot frequency of the halftone pattern. T
constant A was determined empirically by fitting Eq. 
to experimentally measured values of w versus k

p
 .f. As

suggested in previous a work by Huntsman,6 the value
of the constant A depends on the shape and distribut
of the halftone dots. An experimental study of this 
fect is currently underway. In the current report, t
physical significance of Eqs. 5 and 6 is examined by 
ther development of the probability model suggested
Huntsman.

Paraphrasing the Huntsman Model

The notation used in the following derivation differs fro
Huntsman,6 but the thrust of the arguments is the sam
We begin with an incident irradiance I

o
 onto the half-

tone sample. The relative flux of photons striking t
dots and the paper between the dots is F.I

o
 and (1 – F) .I

o
,

respectively. The dot decreases the flux of photons
tering the paper to T

i
  F I

o
. With absorption by the pape

R
g
 and scattering governed by the probabilities P

i
 and

P
p
, the number of photons emerging as reflectance a

surface of the paper can similarly be expressed as sh
in Table II. The total flux of photons emerging from t
paper between the dots, I

p
, is the sum of the terms i

cells (c) and (d) of Table II.

I
p
 = R

g
I

0
[F

i
T

i
(1 – P

i
) + (1 – F) (1 – P

p
)] (8)

In order to obtain the observed reflectance of 
paper between the dots, we divide Eq. 8 by the flux in
dent on the paper between the dots, I

o
 (1 – F). The result

shows R
p
 as a function of the dot area fraction, F.

    
Rp = Rg Ti (1 − Pi )

F
1 − F







+ (1 − Pp )








 (9)

Similarly, the reflectance of the dot is as follows

      
    
Ri = RgTi PiTi + Pp

1 − F
F















 (10)

Thus, if we knew the probability functions, P
i  
and

P
p
, then R

i
 and R

p
 could be calculated, and then with E

1 the overall halftone reflectance could be calculate
Intuitively, the two probabilities P

i  
and P

p
 must be

related. We can gain some insight into this relations
by examining a special case of T

i
 = R

g
 = 1. In this case

we know R
i
 = R

p
 so we can equate Eqs. 9 and 10. 
TABLE II. Summary of Reflected Photon Flux Between and Un-
der Halftone Dots.

Route of Entry Into Paper
Under Dot Between Dot
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rearranging the result we obtain a relationship betw
P

i
, P

p
, and F.

    
Pi = 1 − Pp

1 − F
F






. (11)

This relationship is true for T
i
 = R

g
 = 1. The general

ity of Eq. 11 can be extended by recognizing that P
i
 and

P
p
 are independent of the total number of photons s

tering about in the paper, so that the probabilities
independent of T

i
. We also will assume they are ind

pendent of R
g
, although it has been shown the mean 

path in paper is a function of absorption as well as s
tering.13, 14 Thus, Eq. 11 is assumed true for all value
T

i
 and R

g
.

By substitution of Eq. 11 into Eqs. 9 and 10, 
obtain the following two expressions for R

i
 and R

p
.

R
p
 = R

g
[1 – P

p
(1 – T

i
)], (12)

R
i
 = R

g
T

i
 [1 – P

i
(1 – T

i
)]. (13)

Equations 1 and 11 through 13 provide a model
tone reproduction. Three things are needed: cons
for R

g
 and T

i
 and knowledge of the probability functio

P
p
 . If P

p
 is known, then the function P

i
 is determined

with Eq. 11. Then P
p
 and P

i
 are used with Eqs. 12 and 

to determine the functions R
p
 and R

i
, which then are use

with Eq. 1 to calculate the mean level reflectance.

Modeling the P
p
 Probability Function

Models based on light scattering in paper generally
an empirical expression for MTF or PSF such as sh
in Eqs. 3 and 4. Similarly, a model based on probab
may employ an empirical expression for P

p
. For example

the data in Fig. 3 show the measured reflectance bet
the dots, R

p
, and the reflectance of the dots, R

i
, versus F.

The data are reasonably well fit by Eqs. 5 and 6. C
paring Eqs. 5 and 6 with Eqs. 12 and 13 suggests
following empirical expressions for R

p
 and R

i
.

   Due to typographic error, PiI0Rg(1–F) should be read a
     PpI0Rg(1–F)
Chapter V—Tone Reproduction and Gamuts—453
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Figure 4. Empirical model with Eqs. 14, 11, 13, 12, and 1 fit to d
from Fig. 3 on paper reflectance Rp and ink reflectance Ri.

    P
p
 = 1 – (1 – F)w, (14)

           P
i
 = Fw. (15)

However, these two expressions do not relate to 
other through Eq. 11 as they should. Thus, we migh
lect Eq. 14 and construct P

i
 from Eq. 11. Then we ca

model the data as shown in Fig. 4, where w has been
adjusted to provide the best fit to R

p
 versus F. Unfortu-

nately, R
i
 versus F does not fit well. As an alternativ

we can select Eq. 15 and solve Eq. 11 for P
p
. Then we

can model the data as shown in Fig. 5, where w has been
adjusted to provide the best fit to R

i
 versus F. Unfortu-

nately, R
p
 versus F does not fit well. Thus, the empiric

model suggested previously does not quite agree 
the requirements of the probability model.

Equation 14 seems to model the data well as F ap-
proaches 1, and Eq. 15 seems to model the dataF
approaches 0. A combination of Eqs. 14 and 15 ca
constructed that is in agreement with the probab
model. This is done by first defining the following fun
tions:

   PP1 = 1 – (1 – F)w, (16)

    
PI1 = 1 – PP1

1 − F
F






, (17)

         PI2 = Fw,  (18)

    
PP2 = (1 – PI2)

F
1 − F






. (19)

We then combine them so Eq. 14 dominates at 
F and Eq. 15 dominates at low F.

          P
p
 = F • PP1 + (1 – F) PP2, (20)

            P
i
 = F • PI1 + (1 – F)PI2. (21)
454—Recent Progress in Digital Halftoning II
taFigure 5. Empirical model with Eqs. 15, 11, 13, 12, and 1 f
data from Fig. 3 on paper reflectance, Rp and ink reflectance Ri.

Figure 6. Empirical model with Eqs. 22, 11, 13, 12, and 1 f
data from Fig. 3 on paper reflectance Rp and ink reflectance Ri.
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With some algebra it can be shown that these 
expressions for P

p
 and P

i  
do relate as they should throu

Eq. 11 and thus are consistent with the probability mo
of halftone imaging. Equation 20 can be developed 
the following equivalent expression:

      P
p
 = F[1 – (1 – F)w + (1 – Fw)]. (22)

Then Eq. 22, combined with Eqs. 11, then 5 an
and then 1 results in the fit shown in Fig. 6. This mo
fits the data as well as empirical Eqs. 5 and 6 and is
consistent with the probability model.

Conclusion

Probability-based models of the Yule-Nielsen effect
fer some advantages over models based on the paper
or PSF functions. They are more intuitively describ
and understood, and they are generally expresse
simple, algebraic functions. The disadvantage of p
ability-based modeling is that the form of the proba
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ity function P
p
  will be different for various halftone pat

terns. However, this may not be a significant drawb
compared to traditional models based on PSF becau
geometric function for the specific halftone pattern m
be known to apply a PSF model. In addition, derivi
the P

p
 function from a convolution between the geom

ric halftone pattern and the paper PSF should be 
sible.18 An alternative possibility is the development 
experimental relationships, such as Eq. 7, to relate
probability models for a particular digital halftone pa
tern of interest to the spread function of light in pap
Further work is underway in this laboratory to explo
these relationships experimentally.
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